5539 # ENCAPSULATION, ELECTRONICS, ECCOFOAM | 502 | N 66 - 17 23 | 2 | |----------|-------------------------------|------------| | FORMS | (ACCESSION NUMBER) | (THRU) | | PACILITY | (FAGES) | (CODE) | | | (NASA CR OR TMX OR AD NUMBER) | (CATEGORY) | ## BY FRANCIS N. LeDOUX | OF PRICE \$ | | | |-------------------|------|---------------| | CFSTI PRICE(S) \$ | | | | Hard copy (HC) | 2.00 | | | Microfiche (MF) | .50 | | | ff 653 July 65 | | NOVEMBER 1965 | GREENBELT, MARYLAND ENCAPSULATION, ELECTRONICS, ECCOFOAM BY FRANCIS N. LeDOUX NOVEMBER 1965 ### ENCAPSULATION, ELECTRONICS, ECCOFOAM | | PREP | ARED BY | | |--------|-----------|-----------------------------|------------| | | | (1) | 1.10. | | NAME: | bran | at 11.0 | Le Mour | | TITLE: | Head, Str | uctural and
plications S | Mechanical | DATE: 2/3/64 BRANCH APPROVAL NAME: // // // TITLE: Head, Mechanical Systems Branch DATE: 3/23/6+ DIVISION APPROVAL TITLE: Chief, Spacecraft Integration and Sounding Rocket Division EFFECTIVE DATE: 3/25/64 #### **FORE WORD** The greater percentage of all encapsulation of electronic components and associated circuitry by the Structural and Mechanical Applications Section at Goddard is performed using a polyuerthane foam in place resin. The resin most generally used is Eccofoam FP with a 12-6 catalytic agent. In using this material it was found that, without definite controls of temperature, humidity and proper amounts of resin mix the resulting foam encapsulant would vary considerably, greatly effecting its density and structural homogeneity. A series of tests were therefore conducted so as to ascertain the proper mold and/or resin temperatures, and the amounts of resin to catalyst that would have to be used at an average relative humidity in order to obtain a density of cured foam of from 8 to 10 lbs. per cu. ft. However, before any information gained from these tests could be applied to our applications a technique had to be developed to ascertain the exact volume of a void to be filled. It was found that the requirements for the end product could be met if the herein stated technique and procedure is followed. Francis N. LeDoux #### 1.0 Introduction In the development of payloads for space applications it is required that many and varied types of resins, sealants and adhesives be used to achieve the desired results. Their purposes of use are also varied, however, this procedure and developed technique will deal only with one, Eccofoam FP, a foam in place resin used primarily to effect light weight structural reinforcement of embedded electronic components and associated wiring. #### 2.0 Material Before using Eccofoam FP heat its contents in its container to 165°F then allow to cool. This is required only once. CAUTION: this operation is to be performed only while under the fume hood. Stir contents constantly while heating. #### 3.0 Molds In order to properly contain the electronic component module and embeddment resin a mold must be made. An example of such a mold is shown on page 9 sketch A. The molds used for encapsulating the modules are usually made of aluminum, however, this is not considered a requirement as many other metals would also be suitable. The tests that were made in developing this potting technique were all conducted using aluminum molds The electronic modules or cards that are to be encapsulated should contain relief holes so as to allow a more even expansion of resin on both faces of card. Where this is not possible it is recommended that a stand off be affixed to the card so as to prevent warping of card. The bottom face of the electronic supporting card should have, if possible, stand offs placed (rule of thumb) approximately two inches apart from each other. Your attention is drawn to sketch B, page 10. #### 5.0 Example It is required that an electronic card be embedded in Eccofoam FP. It is also required that the density of foam be from 9 to 10 lbs./cu. ft. In order to fulfill these requirements the following procedure is recommended. - 5.0.1 Determine the volume of void to be filled. - (a) Fill the void to be encapsulated with Cream of Wheat. - (b) Pour off wheat into ml graduate (1 ml = 1 cm 3). - (c) Number of ml is equal to the number of cubic centimeters volume. - (d) Convert the number of cm³ to in³. Multiply cm³ x 0.06102 to obtain in³. - (e) On nomagraph, page 8, locate the amount of resin and catalyst required to fill the determined void. - 5.0.2 Place electronic component and/or card into the potting mold. - 5.0.3 Determine the number and location of stand offs, remove card from mold. - 5.0.4 Affix stand offs to card. - 5.0.5 Determine areas that are to be left free of potting material i.e., plug connectors, trim pots or other adjustables. - 5.0.6 Fabricate and place needed plugs to protect areas determined in 5.0.5. Teflon is an ideal material to use, however, Duxseal may also be used for this purpose if the area is not too large. - 5.0.7 Spray all inside surfaces of the mold with teflon mold release. - 5.0.8 Put silicone mold release on pin connectors even if they are covered with Teflon or, dummy plug. - 5.0.9 Place the electronic card into its mold. - 5.1.0 Place entire assembly into oven including the top plate of mold and allow to remain until mold body has reached a temperature of 60°C. - 5.1.1 Weigh out required amount of Eccofoam liquid resin (5.0.1 d) into a paper cup. - 5.1.2 Weigh out required amount of 12-5 Eccofoam catalyst into a separate container (5.0.1 d). - (a) One method is to use a hypodermic syringe in weighing catalyst (1 cc = 1.1818 grams) multiply grams x .837 to obtain equivalent no. of cc. - 5.1.3 When assembly has reached the required soak temperature remove from oven and place on bench under fume hood. - 5.1.4 Place catalyst into cup containing the resin. - 5.1.5 Mix rapidly using a drill motor and special mixing blade as shown in Sketch C, page 11. #### NOTES - (a) Mix should be completed in 30 to 45 seconds (until a slight reaction is noted, i.e., a cherry red color of the batch will change to a light pink). - (b) Paper cups must be free of grease or wax. Do not use any container that has any film on it. - 5.1.6 As quickly as possible distribute the resin mix as evenly as possible over the electronics card that was previously placed into the mold. - 5.1.7 Quickly place mold cover, that has previously been coated with spray mold release, upon the mold body. - 5.1.8 Immediately place C-clamps in position around edge of nold and tighten finger tight. See example, sketch D page 12 - 5.1.9 Place entire assembly into oven preheated to 60°C and cure for approximately one and one-half (1-1/2) hours at 60°C. Molds having volumes greater than 700 cc and/or thicker walls than mold shown in sketch B, page 10 should be allowed to remain in oven for a two hour cure. The converse is also true. If a mold volume is less than 400 cc and thinner walls a cure may be obtained in approximately 1 hour at 60°C. - 5.2.0 After cure has been completed allow mold to cool to room temperature before removal. If use time is critical rapid cooling can be obtained by placing entire mold and clamping assembly into a refrigerator. - 5.2.1 Cut away excess potting material from mold. - 5.2.2 Remove clamps and mold cover. A thin blade knife will aid in removal of the cover - 5.2.3 Apply, with fingers, a slight pressure around edges of potted card so as to remove card from mold. - 5.2.4 Trim rough edges, remove protective plugs and danseal. #### NOTES 5.2.5 Conditions which affect density. #### 5.2.6 Mold Pre-Heat The higher the heat the lower the density. #### 5.2.7 Size of Pour The larger the amount of pour the lower the density. #### 5.2.8 Mold Restraint The less restraint the lower the density. #### 5.2.9 Humidity The higher the relative humidity the lower the density. #### 5.3.0 Mold Material and Heat Dissipation The higher the rate of heat los; the higher the density. #### 5.3.1 Standard conditions - (a) Mold pre-heat 60°C - (b) Humidity average 47% - (c) Mold material 6061-TG aluminum 1/4" thick wall (Sketch D, page 12) #### **CAUTION:** When specifying Eccofoam FP as an encapsulant it must be understood that the finished product will not be subjected to temperatures above 50°C. Heat from any source above 50°C will tend to distort the encapsulant and create undue stress on components. If finished product is to be subjected to temperatures above 50°C but, no more than 125°C, Eccofoam FPH must be specific. Sketch A Sketch C Sketch D NOTE 1.63 | MACHINE FINISH 2. FOR 50 PIN PLLIG POTTING MOLD, CANNON PLUS MAT'L-TEFLON Sketch E ## ENCAPSULATION, MATERIALS PRC-STYCAST-LOCKTITE | NAME: January, Libbert
TITLE: Head, Structural and Mechanical
Applications Section | 12/3/62 | |--|---------| | BRANCH APPROVAL | DATE | | NAME: TITLE: Head, Mechanical Systems Branch | 3/23/64 | | DIVISION APPROVAL | DATE | | NAME: Loke Saumann TITLE: Chief, Spacecraft Integration and | 3/23/64 | DATE PREPARED BY Sounding Rocket Division ## GENERAL PROCEDURE FOR USE OF STYCAST 2340M CASTING RESIN - 1.0.1 Stycast resin is usually used as a pressure sealant. When used for this purpose it is used with PRC compound. - 1.0.2 The connector should first be prepared as recommended in procedure 2.0.2. Procedures including pertinent notes from 2.0.2 through 2.1.0 should be followed with the exception of amount of PRC and cure. - 1.0.3 Weigh out amount of PRC and accelerator to cover the back of pin connectors and soldered joints. - 1.0.4 Brush on the PRC. Only a thin coating is required as the purpose of the PRC is to prohibit the penetration of Stycast through insert and pin case. #### NOTE Always wash hands before eating or smoking. If accelerator contacts the skin, flush area with warm water. - 1.0.5 After cure has been effected place Teflon mold around connector. - 1.0.6 Separately weigh equal amounts of Stycast components A and
B. Do not mix; leave each component part in its own container. - 1.0.7 Heat components in oven at 125°F. Purpose of this procedure is to reduce the viscosity in order to facilitate mixing. - 1.0.8 Using a clean spatula mix together compound parts A and B. Mix for approximately four (4) minutes. An even mix will have a brick red color without any gray streaks. - 1.0.9 Cast into mold over wire and connector pins that were previously coated with PRC compound. - 1.1.0 Cure overnight in over at 150°F. #### NOTE Overnight cure is recommended if connector is to be subjected to pressure during use. If connector is not to be pressurized a fast cure of four (4) hours at 200°F is adequate. #### GENERAL INSTRUCTIONS FOR USE OF PRC COMPOUND 2.0.1 PRC compound is most generally used as a sealant against metallic particles and moisture, also as a prevention of wire fatigue under vibration. In order to properly contain the sealant a mold must be used. An example of such a mold is shown on the attached sketch E page 13 Procedure E-I. It is recommended that the mold be made of Teflon as the sealant will not adhere to its surfaces. 2.0.2 The connector that is to be potted should be free of grease, oil or wax in order to insure good adhesion of the PRC. Cleaning may be accomplished with a small brush that has been dipped in acetone. #### NOTE Do not expose wire insulation and inserts to the acetone for any long period of time. - 2.0.3 Separate the wires so as to allow a free flow of compound around all wires and soldered connections. - 2.0.4 With a clean wood tongue depressor or putty knife stir the contents slowly until contents appear as a smooth creamy paste. - 2.0.5 With a clean wood tongue depressor or putty knife stir the base compound until base material appears smooth. #### NOTE The ratio of base com ound to accelerator is 10 to 1 by weight. - 2.0.6 Weigh out required amount of accelerator in paper cup. - 2.0.7 Weigh out the required amount of base compound in paper cup. - 2.0.8 Put the accelerator into the cup containing base material and hand mix slowly with a clean wood tongue depressor or clean spatula. Mix for approximately 5 to 7 minutes. Frequently scrape spatula so as to remove unmixed compound. - 2.0.9 Allow air cure for a minimum of 30 minutes. - 2.1.0 Cure by means of heat lamp or drying oven when applicable. #### NOTE Do not cure over 130°F as compound may expand and cause the texture of the sealant to become porous. #### NOTE PRC cures to a tack free condition within twenty-four (24) hours if temperature is maintained at 77°F and the relative humidity at 50%. The effect of humidity is indicated by the fact that compound will become tack free 20 times as fast at 95% relative humidity. #### GENERAL INSTRUCTIONS FOR USING LOCKTITE SEALANT 3.0.1 Locktite sealant is generally used on all critical fasteners at final assembly of payload structures. It is also used on threaded terminals on battery packs. The primary purpose of using locktite is to enhance resistance of mechanical connection to vibration and eliminate loose electrical connections in service resulting in increased mechanical strength of circuit. 3.0.2 Screws to be locktited should be free of grease, oil, or wax. The primary purpose of using locktite is to enhance resistance of mechanical connection to vibration and eliminate loose electrical connections in service resulting in increased mechanical strength of circuit. - 3.0.3 Place small amount of locktite into a small clean dish. - 3.0.4 Apply locktite to screw thread with a small clean brush. Only a very small amount is required, i.e., a maximum of one drop on an average size screw (6-32). - 3.0.5 As an alternate method of application the screw that is to be locktited may be placed on a mechanical screw holder and dipped into the locktite in a dish. Again only a small amount is needed. - 3.0.6 Screw the locktited screw into position at desired torque and allow to cure for approximately five (5) hours at 75°F before vibrating assembly. #### 3.0.7 Notes - 1. Locktite C and CV are the most generally used grades at the GSFC in the assemblies of aluminum and/or magnesium. - 2. Locktite cannot be used successfully on coated surfaces that have been anodized or Dow. | DD | OTED TIPE | $\Delta \mathbf{r}$ | ENC A DSIII | A TITONI | COMBOI | INTING | |--------------|-----------|---------------------|--------------|------------|--------|--------| | \mathbf{r} | CIPERTIES | 1 1 H | KINK A PSILL | 7 1 1 (1) | | | SPACECRAFT INTEGRATION AND SOUNDING ROCKET DIVISION This information was taken from Electronics Products Magazine and is not an original compilation. Sanush. Littleux Francis LeDoux #### PROPERTIES OF ENCAPSULATING C | Manufacturer | Trade Name | Chemical
Composition | Drying
Time | Curing
Time | Pot
Life | Temperature
Range | Cured :
State
Hardness | |--|-----------------------------------|---|-------------------|--|-----------------------------|----------------------|--| | Cochur Atloys Inc.
Orroklyn II. Y. | SHURBOND 192 | Modified Epoxy | 1 hr at room (emp | 4 hr at room
temp | 25 min | 0 to 212°F | Hard, flexible
Shore D – 80 | | Bacon Industries Inc.
Witertown, Mass | P-11 | Filled epoxy
potting
compound | | 8 hr at 212°F
40 hr at 300°F | 90 min at
212°F | | f
a | | | P-19 | Filled epoxy
potting
compound | | 8 hr at 212°F
40 hr at 300°F | 50 min at
212°F | | 1 | | | P-14 | Filled epoxy
potting
compound | | 8 hr at 212°F
40 hr at 300°F | 60 min at
212°F | | | | | P-20 | Filled epoxy
potting
compound | | 8 hr at 212°F
40 hr at 300°F | 25 min at
212° F | | | | | P-38 | Filled epoxy potting compound | | 8 hr at 212 °F
40 hr at 300°F | 60 min at
300°F | | | | | P-56 | Filled epoxy
potting
compound | | 16 hr at 160°F | 3 hr at
160°F | | Shore D Hard-
ness
at 73°F – 93
at 160°F – 92 | | | P-58 | Filled epoxy
potting
compound | | 16 hr at 160°F | 2 hr at
160°F | | | | Carl H. Biggs Co.
Santa Monica, Calif. | Helix potting com-
pound X-474 | Epoxy resin & hardener & microballoon additives | | 1 hr at 85°C
1 hr at 115°C | 45 min
(until baked) | 65 to 200°F | Shore D-80 | | | Helix potting com-
pound X-476 | Epoxy resin,
hardener &
silica | | 1 hr at 95°C
1 hr at 115°C | 48 hr
(until baked) | −65 to 200°F | Shore D-85 | | | Helix potting com-
pound P-420 | 100° resin
solids com-
pound | | 2 hr at room
temp or 1 hr
at 150°F | About 1 hr
to start je!! | -80 to 300°F | Shore D-45 | | | Helix potting com-
pound P-430 | 100% resin
solids com-
pound | | 2 hr at room
temp or 1 hr
at 150°F | About 1 hr
to start jell | −80 to 350°F | Shore D-61 | | | Helix potting com-
pound P-460 | 100% resin
solids com-
pound | | 2 hr at room
temp or 1 hr at
150°F | About 1 hr
to start jell | -80 to 350°F | Shore D-85 | | Biwax Corp. | BIWAX F-6999 | Ероху | | 3 hr at 100°C | 48 hr | Class A | | | Skokie, III. | BIWAX F-6998 | Ероху | | ¹ 2hr at 180°F | 5 hr | Class A | | | | BIWAX E-715 | Thermo-plastic | | | | To 125°C | 1 | | | BIWAX A-1637 | Thermo-plastic | | | | To 135°C | | | and the second second to the second s | BIWAX A-7070 | Thermo-plastic | | | | −55 to 100°C | | ## POUNDS | .'iscosity | Acid/Salt/
Moisture
Resist. | Dielectric
Strength
Constant | Specific Volume Resistivity | Components
for use with | Special
Features | |-----------------------|-------------------------------------|---|--|----------------------------|---| | poises -
pokfield | Excellent | 4.2 at 10 ⁶ cps | 1.5 x 10 ^{1.4} ohm-cm | Capacitors,
resistors | Ex adhesion, flexibility | | poises at
2°F | | 450 v mil | 10 ¹⁴ ohm-cm | | Ex adhesion, low creep | | poises at
2°F | | 450 v 'mil | 10 ^{1.4} ohm-cm | | Ex adhesion, low creep | | poises at
2°F | | 450 v-mil | 10 ^{1,4} ohm-cm | | Low coeff expansion,
high tensile strength | | poises at 2°F | | 450 v 'mil | 10 ¹⁴ ohm-cm | | Low coeff expansion,
high tensile strength,
low creep | | poises at
0°F | | 450 v/mil | 10 ¹⁴ ohm-cm | | Crack resistant, low creep & coeff expansion, high tensile strength | | poises at
0°F | | 450 v/mil | 10 ¹⁴ ohm-cm | | Superior thermal conductivity | | to 30 poises
160°F | | 450 v-mil | 1014 ohm-cm | | Low density, low coeff expansion, non-settling | | 1,000 cps at | Excellent | 330 v/mil at
25°C | 1.0 x 10 ¹⁴ ohm-cm
at 25°C | | Extreme lightness | | ;,000 cps at | Excellent | 330 v/mil at
25°C | 1.3 x 10 ¹⁴ ohm-cm | | Thermal conductivity (BTU/HR 12F/FT2/IN) 6.38 | | 400 cps | Water absorption
24 hr = .00126% | 100-5.37
10,000-4.81
100,000-4.55 | 6.6 x 10 ¹² ohm-cm | | Thermal conductivity
(CAL 'CM/Sec'°C)
.00194 | | 000 cps | Water absorption
24 hr = .004% | 1,000-5.00 | 3.3 x 10 ¹² ohm-cm | | | | ,000 cps | Water absorption
24 hr = .006% | 100,000-3.8 | 8.7 x 10 ¹⁴ ohm-cm | | | | 000 cps | | | 1014 ohm-cm | Transformers | | |),000 cps | | | 10 ¹⁴ ohm-cm | Coils | | | | | | 10 ¹³ ohm-cm | Capacitors | High volume resistivity at elevated temp | | | | | 10 ¹ 4 ohm-cm | Sweep
transformers | Flame resistant | | | | | 10 ¹³ ohm-cm | Potting | Flexible and tough | ## PROPERTIES OF ENCAPS | Manufacturer | Trade Name | Chemical
Composition | Drying
Time | Curing
Time | Pot
Life | Temperature
Range | |---------------------------------------|--|---|----------------|---|--------------------------------------|----------------------| | Chosenes, lac.
Cambridge, Mass. | 162-18 | Epoxy resin | | 24 lar at 75 °F | 30 min 21
75°F | | | | 169-57 | Epoxy resin | | Three-stage | 7 hr at
75°F | To 400°F | | | 230-(18 | Epoxy resin | | 16 hr at 289°F | Indefinite at 75°F | To 275 'F | | CIBA Products
Fairlawn, N. J. | Araldite 6010
Hardener 906 BDMA | Epoxy resin
iiquid anhydride
Tertiary amine | | 4 to 8 hr at
150°C-2 to 4
hr at 200°C | 8 hr at
25°C | 0 to 260°C | | | Araldite 502
Hardener 951 | Epoxy resin,
amine hardener | 24 hr at 25°C | 6 hr at 40°C | 30 min for
1 pound | 0 to 100°C | | | Araidite 6060
Hardener 901 | Epoxy resin
solid anhydride | | 16 hr at 120°C
or 8 hr at 160°C | 60 min at
130°C | 0 to 130°C | | | Araldite 502
Hardener MDA | Epoxy resin
r. /lenedian-
iling | | 8 hr at 80°C or
2 hr at 120°C | 8 hr at
40°C | 0 te 120°C | | Daylen Company
South Gate, Calif. | Thermoplaz | Filled organics | 8 hr | 1 hr at 375°F | 3 hr | -250 to 550°F | | | Thermoplaz | Filled in-
organics | 3 hr | 6 hr at 180°F | 2 hr | -250 to 1250°F | | Dennis Chemical Co.
St. Louis, Mo. | 6801 epoxy base
E-H hardener | Ероху | 24 hr at 77°F | 1 hr at 200°F
3 hr at 400°F | 8 hr at 77°F | 0 to 310°F | | | No. 6704 – A Epoxy
No. 6704 – B Hardener | Filled epoxy | 8 hr at 77°F | 7 days at 77°F
120 min at
150°F | 105 min at
77°F | 0 to 140°F | | | No. 6803 epc.y base
No. E-C Hardener | Modified epoxy | 24 hr at 77°F | 16 hr at 77°F
2 hr at 200°F | 12½ hr at 77°F | 0 to 200°F | | | No. 6805 epoxy base
No. E-F Hardener | Filled epoxy | 2 hr at 77°F | 7 days at 77°F | 40 min | 0 to 275°F | | | No. R-103-1514D
epoxy base
No. R-103-1514E
epoxy hardener | Modified epaxy | | 2 hr at 200°F
15 hr at 500°F | 110 min at
175°F | 0 to 560°F | | Dow Corning Corp.
Midland, Mich | Sylgard 183 resin | Silicone resin
with filler | | 4 hr at 65°C | 4 hr at 25°C | -85 to 482°F | | | Silastic RTV 881 | Silicone com-
pound | | 24 hr at 25°C | 3 hr at 25°C | -67 to 482°F | | | 304 molding compound | Silicone resin & inorganic fillers | | 2 to 3 min at 200 to 300°F | | 270 to 320°F | | | Sylgard 182 resin | | | 4 hr at 65°C | 8 hr at 25°C
with curing
agent | -85 to 392°F | ### ATING COMPOUNDS | 411110 CO | MI COMDS | | | | | | |----------------------------|--|---|------------------------------------|-----------------------------------|---|---| | Cured
State
Hardness | Viscosity | Acid Salt
Moisture
Resist. | Diplectric
Strength
Constant | Specific
Volume
Resistivity | Components
for use with | Special
Features | | 3-7000 psi | 4,000 cps at 75°F | | 4.20 | 4 x 1016 ohm-cm | | Low viscosity, roem
temp cure | | 3-10,500
i | 30,000 cps at
75°F | | | | | High heat resistance | | 3-9,000
:i | 47,000 cps at 75°F | | 4.0 | | Transformers | Low shrinkage | | ard | 2,000 cps at
25°C | | 400 v mil | 1 x 1016 ohm-cm | | High temp resistance | | ard | 1,000 cps at 25°C | Acid, salt resist-
ant, low water
absorption | 430 to 500
v 'mil | 1 x 1016 ohm-cm | · | Excellent adhesion | | ard | 140 cps at
120°C | Water absorption
0.3%/1 hr at 100°C | 400 v 'mil | 6.5 x 10 ¹⁵ ohm-cm | | Low shrinkage, no
exotherm | | ard | 800 cps at
40°C | Low water absorp-
tion, acid salt
resistant | 420 v mil | 3.8 x 1014 ohm-cm. | | Tough and chemical resistant | | lard, 120
lockwell | 2,000 cps | Acid, salt resist-
ant, low moisture
absorption | 500 v 'mil | 1014 | Diodes, solenoids,
transistors, semi-
conductors | | | lard, 170
lockwell | 2,000 cps | Acid, salt resist-
ant, absorbs
moisture | 250 v.′mil | 1010 | Diodes, solenoids,
transistors, semi-
conductors | | | ard,
hore D-93 | 12,000 cps at
77°F - 800 cps
at 110°F | Excellent | 490 v/mil | 2.6 x 10 ¹⁵ ohm-cm | High temp oper-
ating electrical
components | High heat distortion
temp, good chemical
resistance | | lard,
hore D-60 | 5,400 cps at
77°F | Excellent | 300 v 'mil | 10 ¹³ ohm-cm | Potting coils and transformers | Low toxicity and
shrinkage, ex thermo-
shock properties | | tard,
hore D-60 | 230 cps at
77°F | Acid salt resist-
ant, low water
absorption | 300 v/mil | 1013 ohm-cm | Laminating, ca-
pacitors and
intricate electrical
pottings | Low viscosity, long pot
life, good adhesion | | lard,
shore D-95 | 5,000 cps at 77°F | Excellent | 370 v /mil | 4 x 10 ¹ 4 ohm-cm | Potting and encas-
ing transformers | Good heat transfer and adhesion | | lard,
shore D-92 | 2,000 cps at 160°F | Excellent | 400 v/mil | 0.38 x 1016
ohm-cm | High temp elec-
trical potting
applications | Long pot life, ex
electrical properties | | ihore A-45 | 8,000 cps at
25°C – 5,000
cps with curing
agent added | Acid salt resist-
ant, low water
absorption | 550 v /mil | 2 x 10 ^{1 s} ohm-cm | Potting or em-
bedding all elec-
trical components | Tough, easy repairing,
heat resistant | | Shore A-85 | 50,000 cps | Ex to all except strong oxidizing acids | 550 v/mil
ASTM D-149 | 1 x 1014 ohm-cm | Ail | Wide service temp range,
ex dielectric properties | | .i 90, D 785 | | Ex to all except
strong oxidizing
acids | 380 v/mil | 5 x 10 ¹ 4 ohm-cm | Diodes,
transistors | Shock and flame resistant | | hore A-40 | 5,000 cps at 25°C | Ex to all except
strong oxidizing
acids | 550 v/mil | 2 x 10 ¹⁵ ohm-cm | Ali | Transparency, easy repairing, heat rasistant | ## PROPERTIES OF ENCAF | Manufacturer | Trade Name | Chemical
Composition | Drying
Time | Curing
Time | Pot
Life | Temperature
Range | |--|-----------------------------|------------------------------------|---|---|--|--| | 1 — Frees, o & Conares, The Free Garbon, Mass | STYCAST 2651 | Filled epoxy | | 8 hr at 70 F
16 hr at 200 F | ¹ 2 hr at 70° F
8 hr at 70° F | −70° to 350°F | | :

 | STYCAST 2850 FT | Filled epoxy | - | 8 hr at 70 F
16 hr at 200 F | ¹ ₂ hr at 70-F
8 hr at 70 F | -80° to 400 F | | i
: | STYCAST 1467 | Filled epoxy | | 8 hr at 70 F
16 hr at 200 F | ¹ ½ hr at 70° F
8 hr at 70° F | −100 [^] to
300 ⁻ F | | : | ECCOFOAM FP | Polyurethane closed cell | | 2 hr at room temp
150°F 1 hour | | -95 to +150°F | | ;
! | ECCOFOAM FPH | Polyurethane closed cell | | 6 hrat room temp
Hi-temp post
cure 300° F | | −95 to +300° F | | :
 | ECCOCOAT 36-D | Filled epoxy | | ¹ ₂ hr at 350°F | 6 mos at 70°F | -70° to 450° F | |
 -
 - | STYCAST 1210 | Filled epoxy | | 2 hr at 250°F | 3 days at 70°F | 100° to 350° F | | i
i | STYCAST 1264 | Unfilled epoxy | | 48 hr at 70°F
8 hr at 110°F | 2 to 4 hr in
small masses | -70 to 250°F | | Epoxy Products
Irvington, N. J. | Molding compound
MP 2000 | Epoxy, mineral filled, 1 component | | 15 sec to 3 min | ~ manu | −65 to 500°F | | | E Form pellets 5099 | Epoxy, mineral filled | | 12 hr at 100°C | | To 175°C | | | E Form pellets 6073 | Epoxy, mineral filled | | 90 min at
125°C | | To 200 C | | General Electric Co.
Silicone Prod. Dept.
Waterford, N. Y. | RTV-11 | Filled silicone
100% solids | 8 to 12 hr-1% cat
3 to 5 hr .5% cat | 48 hr .1% cat
24 hr .5% cat | 4 to 6 hr .1%
cat - 1 to
2 hr .5% cat | 65 to 600°F | | | RTV-90 | Filled silicone,
no solvents | 3 to 5 hr .1% cat
2 to 3 hr .5% cat | 24 hr .1% cat
16 to 24 hr
.5% cat | 1 to 2 hr .1%
cat
¼ to 1 hr .5%
cat | −65
to 600°F | | | RTV-102 | Filled silicone, no solvents | 15 to 30 min | less than 24 hr | | −65 to 400°F | | | LTV-602 | Filled silicone, no solvents | Controlled by | type catalyst, quanti
and temperature | ity catalyst | -65 to 400°F | | | RTV-26 | Filled silicone,
190% solids | 8 to 12 hr .1% cat
4 to 6 hr .5% cat | 36 hr .1% cat
24 hr .5% cat | 3 to 5 hr .1%
cat
1 to 2 hr .5%
cat | -65 to 600°F | | | RTV-30 | Filled silicone,
100% solids | 7 to 10 hr .1% cat
2 to 4 hr .5% cat | 24 hr .1% cat
8 to 12 hr .5%
cat | 3 to 5 hr .1%
cat
1 to 2 hr .5%
cat | −65 to 600°F | #### TING COMPOUNDS | Cured
State
lardness | Viscosity | Acid/Salt/
Moisture
Resist. | Dielectric
Strength
Constant | Specific
Volume
Resistivity | Components
for use with | Special
Features | |----------------------------|-------------------------|---|---|---|---|--| | rd, 90-100
re D | 10,000 cps | Excellent | 455 v mil | 5 x 10 ¹⁶ ohm-cm
at 25 C
1 x 10 ¹³ at 150 C | Wide variety of casting, potting | Versalitity | | remely
rd. Shore
100 | 15,000 cps | Outstanding | 455 v mil | 5 x 10 ¹⁸ at 25 °C | Large electrica:
castings | Low thermal expension coeff | | id, 90-10C
are D | 8,000 cps at
25°C | Very good | 400 v mil | 1 x 10 ¹⁴ ohm-cm | Circuitry when
flame and fume
hazards are
critical | Fire retardant in high
degree | | 'cu ft
ore A-70 | | | | | Electronic circuitry | Low bulk density | | cu ft
ore A-70 | | | | | Electronic
circuitry | Hi-temperature use | | :d. 3H,
ncil hard- | Thixotropic
Dip-Coat | Excellent | 450 v mil | 1 x 10 ¹⁴ ohm-cm | Capacitors and resistors | Fast cure capability | | rd, Shore
30 | 10,000 cps | Excellent | 460 v mil | 1.2 x 10 ^{1.4} ohm-cm | Transformer
petting | "Semi-flexible" high
impact and thermal
shock resistance | | rd, tough
ore D-80 | 1,000 cps | Excellent | 300 v. mil | 1 x 10 ¹⁴ ohm-cm | Circuit module
encapsulation | Optically clear, high impact strength, low viscosity | | rd, TS
100 psi | | Excellent | | 10 ¹⁶ at 25°C | Resistors, ca-
pacitors, semi-
conductors, coils | Low troiding pressures | | rco! 29 | 2,000 cps at
100°C | Good | 400 v mil | 1 x 10 ¹⁶ at 25°C | All components | Solid I commonent,
pre-weighed | | | | Excellent | 380 v mil | 10 ¹⁵ at 25°C | Silicon Diodes | Flame resistant | | estomer
ore 45 | 120 poises | Resistant to most
chemicals, low
moisture absorp-
tion | 630 v mil | 6 x 10 ¹⁵ ohm-cm | Electrical & electronic equipment | White, great flexibility | | astomer
ore 60 | 12,000 poises | Resistant to most
chemicals, low
moisture absorp-
tion | 600 v mil | 1.3 x 10 ¹⁴ ohm-cm | All electrical & electronic equipment | Stiff paste, applied by spatula | | astomer
ore 28 | Thixotropic | Resistant to most
chemicals, low
moisture absorp-
tion | .058*-550
v.mil
.013*-425
v/mil | 3.3 x 10 ¹⁵ ohm-cm | All electrical & electronic equipment | Adheres to anything, ready to use | | astomer
ore 15 | 12 poises | Resistant to most
chemicals, low
moisture absorp-
tion | .020"-41
kv 'mil
.100"-75
kv/mil | 1 x 10 ¹⁴ ohm-cm | All electrical & electronic equipment | Complete transparency | | astomer
ore 50 | 300 poises | Resistant to most
chemicals, low
moisture absorp-
tion | 650 v-mil | 5 x 10 ¹³ ohm-cm | Ali electrica! & electronic equipment | | | lastomer
ore 60 | 300 poises | Resistant to most
chemicals, low
moisture absorp-
tion | 625 v mil | 1 x 10 ¹⁵ ohm-cm | All electrical & electronic equipment | | ## PROPERTIES OF ENCAP | 1 | | ì | | | COI LIVIILS | OF ENCAP | |--|--|---|---|---|--|----------------------| | Manufacturer | Trade Name | C'remical
Composition | Drying
Time | Curing
Time | Pot
Life | Temperature
Range | | General Electric Sc.
Silicone Prod. Dept.
Viaterford, 41, 7, | R1V-40 | Filled silicone,
10% solids | 12 to 16 hr .1%
cat
5 to 8 hr .5% cat | 36 to 48 hr .1%
cat
24 hr .5% cat | 5 to 8 hr .1%
cat
2 to 3 hr .5%
cat | −65 to 600°F | | } | RTV-60 | Filled silicone,
100% solids | 8 to 12 hr .1% cat
4 to 6 hr .5% cat | 24 hr .1% cat
24 hr .5% cat | 3 to 5 hr 1%
cat
1 to 2 hr .5%
cat | 65 to 600°F | | | RTV-77 | Filled silicone
100% solids | 6 to 10 hr .1% cat 2 to 3 hr .5% cat | 36 to 48 hr .1%
cat
24 hr .5% cat | 2 to 3 hr .1%
cat
1 to 2 hr .5%
cat | 65 to 600°F | | | RTV-68 | Filled silicone
100% solids | 8 to 12 hr .1%
cat
4 to 6 hr .5% cat | 24 hr .1% cat
16 to 24 hr .5%
cat | 4 to 6 hr .1%
cat
1 to 2 hr .5%
cat | -65 to 600°F | | H. V. Hardman Co., Inc.
Belleville, N. J. | EPOCAP | Filled or un-
filled epoxy | 1 min. at 200°F
or 2 hr at 70°F | 20 min at 200°F
or 3 days at
70°F | 20 min to 3 hr | 0 to 300°C | | | EPOLAST | Unfilled flexible epoxy | 5 min at 175°F
or 30 min at
70°F | 30 min at
160°F or 3 days
at 70°F | 20 min to 1 hr | −65 to 250°F | | Hysol Corp.
Olean, N. Y. | Hysol Encapsulating
C9-4183/H2-3561 | Modified epoxy | | 24 hr at 25°C | 80 min at
25°C | −55 to 130°C | | Hysol Corp
Olean, N. Y. | C8-4143 H2-3404 | Modified expoy | | 24 hr at 25°C | 20 min at
25°C | -55° to
105°C | | | Encapsulation
Compound C17 | Modified epoxy | | 4 hr at
125°C | 1-1 ¹ 2 hr at
80°C | -55° to
80°C | | | C9F-5151 H9-3569 | Modified epoxy | | 16 hr at | 40 to 50 min
at 25°C | -65° to
130°C | | | RTV 260 | Modified sili-
cone | | 24 hr at room temp | 1-1½ to
2-2½ hr | -65° to
260°C | | Marco Chem. Corp.
Linden, N. J. | MR-28CS | Polyester
resin | | 6 hr at 180°F | 5 to 7 days | 0 to 300°F | | Mesa Plastics Co. | DIALL | Diallyl Phtha-
late resin based
molding com-
pound | | 1 to 3 min at
300°F | 1 year | 400 to
500°F | | | EPIALL | Epoxy resin-
based molding
compound | | 300 to 350°F
1 to 5 min at | | To 500°F | | | POLYALL | Alkyd resin-
based molding
compound | | 30 sec at
300°F | | To 400°F | ## ATING COMPOUNDS | Cured
State
tardness | Viscosity | Acid/Salt/
Moisture
Resist. | Dielectric
Strenyth
Constant | Specific
Volume
Resistivity | Components
for use with | Specia!
Features | |--------------------------------|-------------------------|---|------------------------------------|---|--|--| | lastomer
hore 55 | 450 poises | Resistant to most chemicals, low moisture absorption | 600 v mi! | 1 x 10 ¹⁴ ohm-cm | All electrical &
elestronic
equipment | White color | | lastomer
hore 60 | 550 poises | Resistant to most chemicals, low moisture absorption | 600 v∙mil | 1 x 10 ¹⁴ ohm-cm | All electrical &
electronic
equipment | Also available in
aerosol | | lastomer
hore 50 | 8,000 poises | Resistant to most chemicals, low moisture absorption: | 650 v/mil | 1 x 16 ¹⁵ ohm-cm | All electrical & electronic equipment | White thixotropic applied by caulking gun | | lastomer
101e 65 | 10,000 poises | Resistant to most chemicals, low moisture absorp- | 575 v/mil | 1 x 10 ¹⁴ ohm-cm | All electrical & electronic equipment | Thixetropic applied by caulking gun | | ard | 5,000 cps | Excellent | Excerlent | Excellent | Almost all | Excellent stability | | lexible,
tore D-30
td up | 1,500 cps | Excellent | Good | Good | Semiconductor
modules | Flexibility | | 10re D-83 | v at 25°C | Resistant to most | 4.21 at 100
kc at 30°C | 3.99 x 10 ¹⁴
ohm-cm at 30°C | Where impact
strength is need-
ed around lead
wires | General purpose,
resilient, room
cure | | nore D-82 | 3,000 at 25°C | Resistant io most | 4.2 at 100 kc
at 30°C | 4.1 x 10 ¹⁴ ohm-cm
at 30°C | All that require
a rigid insul-
ation system | General purpose,
rigio, room cure | | iore D-70 | 250-750
at 80°C | Excellent to most | 4:4 at 100 kc
at 30°C | 3.8 x 10 ¹³ ohm-cm
at 30°C | Military
components | Meets Mi'1-
16923D | | nore D-83 | 3,000 at 25°C | Excellent to most | 4.52 at 100
kc at 30°C | 4 x 10 ¹⁴ ohm-cm
at 30°C | All components
requiring low
temp & flame
resistance | Flame-out, room
temp cure | | nore A-65 | 25,000 -
35,000 | Resists all | 3.6 at 30°C | 3 x 10 ¹⁴ ohm-cm
at 30°C | All electrical and electronic | Absorbs shock and vibration | | rcol 40 | 600 to 800 cps | Acid salt resist-
ant, low water
absorption | 500 v /mit | 7.1 x 10 ⁷ meg-ohms | Capacitors | | | ircol 65 | Powder or
flake form | Excellent | 450 v/mil | 10 ⁷ plus | Any molded part
where nigh re-
liability is
necessary | Excellent physical
& electrical
properties | | arcol 70 | Powder or
flake form | Excellent | 450 v/mil | 10 ⁷ plus | Any molded part
where high re-
liability is
needed | Excellent for components | | arcol 65 | Flake or putty | Fair | 350 v/mil | 10 ⁷ plus | Connectors | | ## PROPERTIES OF ENCA. | Manufacturer | Trade Name | Chemical
Composition | Drying
Time | Curing
Time | Pot
Life | Temperature
Range | |--|--
---------------------------------------|----------------|---|---------------------------|----------------------------| | Minnes Sta Mining &
Manelacturing Gill
St. Phon. Minn. | "Scotchcast"
Brand Resin No. 247 | Filled epoxy | | 2 hr at 120 C | 3 to 4 days | -55 to
130°C | | -
•
•
•
• | "Scotchcast"
Brand Resin No. 241 | Filled No. 235
epoxy | | 2 hr st 120° C | 3 to 4 days
at 23°C | -55 to 130 C
continuous | | | "Scotchcasi"
Brand Resin No. 2 | Unfilled epoxy | | 1 hr at 60°C
to
24 hr at 23°C | 3 4 to 2 hr
at 23°C | -55 to 105°C | | ·
· | "Scotchcast"
Brand Resin No. 3 | Unfilled epoxy | | 2 hr at 120 °C | 3 to 4 days
at 23 °C | -55 to 105 °C | | | "Scotchcast"
Brand Resm No. 5 | Unfilled epoxy | | 1 hr at 69 °C
to
24 hr at 23 °C | 3 4 to 2 hr at 23°C | -55 to 105 °C | | | "Scotchcast" Brand Resin No. 8 | Unfriied epoxy | | 1 2 hr at 95°C | 1 to 2-1 2 hr
at 23°C | -55 to 130°C | | | "Scotchcast"
Brand Resin No. 235 | Unfilled epoxy | | 2 hr at 120°C | 3 to 4 days
at 23°C | -55 to 130°C
continuous | | | "Scotchcast"
Brand Resin No. 232 | Filled brown
epoxy | | 1 hr at 60°C
to
24 hr at 23°C | 3.4 to 2 hr
at 23°C | 55 to 105°C | | | "Scotchcast"
Brand Resin No. 10 | Filled thixe-
tropic epoxy | | 1.'2 hr at 95°C
to
24 hr at 23°C | 1 to 2-1 2 hr
at 23°C | −55 to 130°C | | | "Scotchcast"
Brand Resin No. 9 | Filled No. 8
epoxy | | 1 2 hr at 95°C
or
24 hr at 23°C | 1 io 2-1 '2 hr
at 23°C | −55 to 130°C | | | "Scotchcast"
3rand Resin No. 248 | Filled thixo-
tropic epoxy | | 2 hr at 120°C | 3 to 4 days
at 23°C | −55 to 130°C | | | "Scotchcast"
Brand Resin No. 250 | Unfilled epoxy | | 2 hr at 120°C | 3 to 4 days
at 23°C | -55 to 130°C | | | "Scotchcast"
Brand Resin No. 251 | Filled No. 250 epoxy | | 2 hr at 120°C | 3 to 4 days | -55 to 155°C | | | "Scotchcast"
Brand Resin No. 252 | Filled thixo-
tropic epoxy | | 2 hr at 120°C | 3 to 4 days | -55 to 155°C | | | "Scotchcast"
Brand Resin No. CRP
253 | Filled thixo-
tropic | | 2 hr at 120°C | 3 to 4 days
at 23°C | -55 to 130°C | | | "Scotchcast"
Brand Resin No. 603 | Filled powder
- one part | | 3 to 4 hr
at 90°C | 3 to 4 hr at
90°C | | | | "Scotchcast"
Resin No. XR-5017 | Unfilled siti-
cone rubber
foam | | 1 '2 hr at 120°C
or
24 hr at 23°C | 1/2 hr at
23°C | -75 to 260°F | | Natl Engrg Prod. Inc.
Washington, D. C. | Castiplast #11 | Modified epoxy | | Overnight at room temp | 45 min | -55 to 110°C | | | Caiplast #474 | Modified epoxy | | Overnight at room temp | 45 min | -55 to 110°C | | | Castiplast #594 | Filled epoxy | | Overnight at room temp | 2-1/2 hr | -55 to 110°C | #### LATING COMPOUNDS | CATING | CMI OUNDS | | | | | | |-----------------------------|-------------------------|------------------------------------|------------------------------------|--|---|---| | Cured
State
Hardness | Viscosity | Acid/Salt.'
Moisture
Resist. | Dielectric
Strength
Constant | Specific
Volume
Resistivity | Components
for use with | Special
Features | | emi-flexible hore D-65 | 75,000 cps at 23°C | Very good | 400 v mil | 10 ¹⁴ ohm-cm
at 23 °C | Those desiring fast flameout characteristics | | | emi-flexible
hore D-65 | 30,000 cps at 23 °C | Very good | 375 v mi! | 10 ^{1.4} ohm-cm
at 23 C | Small components to large transformers | Thermal shock resistant | | Rigid
25 Barcol | 25.000 cps at 23°C | Very good | 325 v mil | 10 ¹⁴ ohn-cm
at 23°C | | Self extinguishing-
reliable | | Rigid
Barcol | 1,000 cps at 23°C | Very good | 350 v mil | 10 ¹³ ohm-cm
at 23°C | | Low velocity superior properties | | igid
35 Barcol | 2.200 cps at 23°C | Very good | 325 v mit | 10 ^{1.4} ohm-cm
at 23 °C | | Self extinguishing-
excellent properties | | semi-flexible
Thore D-70 | 5,700 cps at 23°C | Very good | 430 v mil | 10 ⁴ ohm-cm
at 23°C | Motor stators & coils, p-c boards | Shock resistant | | Semi-flexible Shore D-55 | 4,400 cps at 23°C | Very good | 325 v mil | 10 ^{1.4} ohm-cm | All | Stays flexible | | Rigid
O Barcol | 100,000 cps at 23°C | Very good | 375 v mil | 10 ¹⁴ ohm-cm
at 23°C | Battery and con-
denser sealant | Thick putty material used for sealing | | emi-flexible
thore D-75 | High paste | Very good | 450 v mil | 10 ¹⁴ ohm-cm
at 23°C | All | Shock resistant.
non-sagging
properties | | emi-flexible
thore D-75 | 25,000 cps at 23°C | Very good | 450 v. mil | 10 ¹⁴ ohm-cm
at 23°C | | Low exothermic heat rise during cure | | emi-flexities
Shore D-65 | High thixo-
tropic | Very good | 400 v mil | 10 ¹⁴ ohm-cm
at 23°C | All | High temp stability | | Rigid
25 Barcol | 2,000 cps | Very good | 350 v. mil | 10 ¹⁵ ohiu-cm
at 23°C | | Fine impregnant,
Pour like machine
oil | | Rigid
IS Barcol | 200 cps at
120°C | Very good | 450 v 'mil | 10 ¹⁵ ohm-cm
at 23°C | Transformers
and other
components | High temp resistant | | Rigid
45 Barcol | Medium thixo-
tropic | Very good | 450 v/mil | 10 ¹⁵ ohm-cm
at 23°C | | | | Semi-flexible
Shore D-64 | High thixo-
tropic | Very good | 375 v/mil | 10 ⁴ ohm-cm
at 23°C | | | | Rigid closed cell | | Very good | 50 v/mil | | Insulated motor | | | Flexible closed cell | 20,000 cps at at 25°C | Very good | 75 v/mi1 | 1.8 x 10 ¹³ ohm-cm
at 23°C | Coating circuit
boards & panels;
components | High temp foam binds
to most materials | | Hard | 900 cps | Excellent | 340 v. mil | 1013 | | Ex air bubble release | | Hard | Thixotropic | Excellent | 340 v/mil | 1013 | | No sag or running during cure | | Hard | 20,000 cps | Excellent | 460 v/mil | 1013 | | Very low exotherm | | | | | | | | | #### PROPERTIES OF ENCA. | | • | | p | | PROPERTIE | S OF ENCA | |---|------------------------------------|---------------------------------|---|---|------------------------------|------------------------| | Manufacturer | :
Trade Name | Chemical Composition | Drying
Time | Curing
Time | Pot
Life | Temperature
Range | | Salt Englished Pel | Castiplast #891 | Modified epoxy | | Overnight at 40 C | 5-1 2 hr | -55 to 100 C | | | Castiplast #894 | Filled epoxy | | Overnight at room temp | 25 min | -55 to 130 °C | | Rore, 5, Inc.
Cranston, R. L. | GRI61 | Unfilled poly-
sulfide enoxy | 4 hr at 25 C | 4 hr at 70°C | 3 hr | -65 to 150 C | | | GR204 | Unfilled poly-
sulfide epoxy | 60 min at 25 °C | 4 hr at 25 C | 30 min at 25°C | -65 to 135 °C confined | | | GR401 20 | Unfilled epoxy | 30 min | 3 isr at 25°C | 20 to 30 min | -50 to 150°C | | Proffic Resins &
Chemicals, Inc.
Seattle, Wash. | EMC 90-B-1 | Mineral filled epoxy | | 15 to 45 sec | | -65 to 250°C | | Products Research
Co.
Burbank, Calif. | PR-905 | Modified epoxy | | 1 hr at 180°F | 25 min | -65 to 300°F | | | PR-906 | Modified epoxy | | 1 hr at 180°F | 25 min | -65 to 300°F | | | PR-1538 | Polyurethane | | 4 hr at 180°F | 1 hr | -70 to 300°F | | RCL Electronics
Inc.
Riverside, N. J. | BJP-9 | Ероху | 10 hr | 3 hr | 30 min | -85 to 250°C | | Seal-Peel, Inc.
Royal Oak, Mich. | SEAL-STOP | Cellulose ace-
tate butyrate | Less than 1 min | | Weeks | | | The Sterling
Varnish Co. | E-602-41 | Pourable filled epoxy | 1 hr at 150°C | 5 hr at 150°C | 1 hr at
130°C | -130 to
150°C | | Sewickley, Pa. | U-300 | Thixotropic filled epoxy | 1 '2 hr at 150°C | 16 hr at 150°C | 4 to 6 nos
at 25°C | 0 to 186°C | | | E-450-46A | Thixotropic filled epoxy | 12 to 16 hr at 25°C | 12 hr 25°C or
2 hr 100°C | 2 to 3 hr at
25°C | −55 to 130°C | | | E-653-46 | Pourable filled epoxy | 12 to 16 hr at
25°C | 22 hr at 25°C
or 2 hr 110°C | 2 to 3 hr at
25°C | -55 to 130°C | | Techform Labs, Inc.
Venice, Calif. | ETC-1 | Filled epoxy | | Overnight at 72°F | 1 to 2 hr | 0 to 250°F | | | ETC-2 | Filled epoxy | | 2 to 3 hr at
300°F | Several days
at 72°F | 0 to 350°F | | Technicraft Co.
Boston, Mass. | "Chemiglas" type
RTC-B | Liquid poly-
ester resin | 30 min to 48 hr | Jell in 7 min
to 20 min | Varies with amts of catalyst | • | | Silicone Div. Union
Carbide Corp.
Hew York, N. Y. | UCAR K-1850 RTV
Silicone rubber | Filled silicone polymer | Tack free surf
1. '2-10 hr at 25°C
(controllable) | 1/21-20 hr at
25°C
(controllable) | Same as curing time | −90 to 550°F | | Western Coating Co.
Royal Oak, Mich. | MASKCOAT #2 | Cellulose ace-
tate butyrate | less than 1 min | | Several
weeks | | | | | | | ·•···· | | - | #### LATING COMPOUNDS | Cured
State | Viscosity | Acid Salt
Moisture | Dielectric
Strength | Specific
Volume | Components for use with | Special
Features | |--|--|---|------------------------------|--|---|--| | Hardness
Rubbery | 500 cps | Resist.
Fair | Constant | Resistivity | - | | | ard | 8.000 срѕ | Excellent | 116 v mil | 10,1. | | acter mach stell,
Self-extragalishing
righ there all shock | | Rigid 75-85
pe A 10
ec readings | Low. 55 poises | Acid and salt re-
sistant, low water
absorption | 435 v mil | 1.5 x 10 ¹³ | Canacitors, resistors, transistors, transistors, printed circuits | Excellent adhesion, high
impact at an ici | | Rubbery 60-
70 Type A
10 sec read-
ings | Very low, 22
poises at 25°C | Acid and salt re-
sistant, low water
absorption | 250 v mil | 1.5 x 10 ¹² | Capacitors, re-
sistors transist-
ors, printed
circuits | Excellent adhesion bigo immact at -60 °C | | Hard, 97 M
Rockwell | Low. 750 cps | Acid and salt re-
sistant, low water
absorption | 4.2 at 60°C
(.5 at 106°C | 10 ¹⁵ ohm-cm | Capacitors.
resistors | Excellent adhesion | | Rockwell
110 M | Solid, granular | Acid salt resist-
ant, low water
absorption | 200 v mil | 10 ¹⁶ ohm-cm | All | High flow under low pressure | | emi-flexible
Thore D-65 | 20 poises | Acid, salt resist-
ant, low water
absorption | 300 v mil | 5 x 10 ¹² ohm-cm | | Tough, semi-flexible,
low volume shrinkage | | Semi-flexible
Shore D-75 | 20 poises | Acid salt resist-
ant, low water
absorption | 350 v/mit | 6 x 10 ¹² ohm-cm | | Tough, semi-flexible.
low volume shrinkage | | Flexible
Shore A-80 | 100 poises | Fair acid, salt resistance | 750 v mil | 1 x 10 ¹³ ohm-cm | | Tough, flexible, cold-
flow resistance | | Hard, Rock-
well 26 M | Low | Acid salt resist-
ant, non-higro-
scopic | 19,000 v mil | lu ¹⁶ ohm-cm | Capacitors,
resistors | High temp. operation | | | | | 500 v mil | | | | | Semi-rigid
Shore D-80 | 2,000 cps at 135°C | Excellent | 400 v 'mil | 10 ¹⁵ ohm-cm | Transformers, switchgear | Ex elec properties,
low coeff of expansion | | Rigid
Shore D-85 | Thixotropic paste | Excellent | 350 v mil | 10 ¹⁵ оһт-ст | Rotating field coils | Retention of high
bond at elevated temp | | Semi-rigid
Shore D-80 | Thixotropic paste | Excellent | 350 v. mil | 10 ¹⁴ ohm-cm | | Brushable, 100% solid protective coat | | Semi-rigid
Shore D-80 | 2,000 cps at 25°C | Excellent | 350 v∕mil | 10 ¹⁴ ohm-cm | Coils, trans-
formers, motors | Machinable | | Shore D-88 | 20,000 cps at room temp | Good chemical resistance | 350 v/mil | 10 ¹⁵ ohm-cm | Transformers | | | Shore D-65 | 10,000 cps | Good chemical resistance | 350 v. mil | 10 ¹⁵ ohm-cm | Transformers | Long shelf life, high shock resistance | | Rockwell M
Scale 115 | 400 cps | Excellent-except concentrated acids & alkals | 530 v/mil | | | | | Shore A-50 | (uncured) Nom
55,000 cps can
be lowered to
20,000 cps with
diluent | Salt resistant, low
water absorption | 1,000 v. mil,
33 mil slab | 10 ¹⁴ - 10 ¹⁶
ohm-cm 75°C | All potting & encapsulating applications | Broad temp range, re-
pairable, bondable,
with primer | | | | | 500 v/mil | | | |